Math 4650 - Homework # 3 Infinite Series

Part 1 - Computations

- 1. Calculate the value of $\sum_{n=2}^{\infty} \left(\frac{2}{7}\right)^n$
- 2. Calculate the value of $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{2n}$
- 3. Use partial fractions to show that $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} = \frac{1}{2}$
- 4. Use partial fractions to show that $\sum_{n=2}^{\infty} \frac{2}{n^2 1} = \frac{3}{2}$

Part 2 - Proofs

- 5. Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series with $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$. Let α be a real number.
 - (a) Prove that $\sum_{n=1}^{\infty} \alpha a_n$ converges to αA .
 - (b) Prove that $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to A + B.
- 6. Let (a_n) be a sequence of real numbers. Prove that $a_n \to 0$ if and only if $|a_n| \to 0$.
- 7. Determine whether the following series converge or diverge. Explain why.

(a)
$$\sum_{n=1}^{\infty} \frac{2n}{3n+1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + n^2 + n + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 + 1}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{2n^3 + 1}$$

(e)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$$

- 8. (a) Prove that if $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) Give an example to show that the converse of part (a) is not true. The converse is: if $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} |a_n|$ converges.
- 9. (We used this for evaluating geometric series) Prove that if -1 < r < 1, then $\lim_{n \to \infty} r^n = 0$.